By Topic

Optimal Operation of Distribution Feeders in Smart Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sumit Paudyal ; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada ; Claudio A. Canizares ; Kankar Bhattacharya

This paper presents a generic and comprehensive distribution optimal power flow (DOPF) model that can be used by local distribution companies (LDCs) to integrate their distribution system feeders into a Smart Grid. The proposed three-phase DOPF framework incorporates detailed modeling of distribution system components and considers various operating objectives. Phase specific and voltage dependent modeling of customer loads in the three-phase DOPF model allows LDC operators to determine realistic operating strategies that can improve the overall feeder efficiency. The proposed distribution system operation objective is based on the minimization of the energy drawn from the substation while seeking to minimize the number of switching operations of load tap changers and capacitors. A novel method for solving the three-phase DOPF model by transforming the mixed-integer nonlinear programming problem to a nonlinear programming problem is proposed which reduces the computational burden and facilitates its practical implementation and application. Two practical case studies, including a real distribution feeder test case, are presented to demonstrate the features of the proposed methodology. The results illustrate the benefits of the proposed DOPF in terms of reducing energy losses while limiting the number of switching operations.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 10 )