By Topic

LEEN: Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shadi Ibrahim ; Cluster & Grid Comput. Lab., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Hai Jin ; Lu Lu ; Song Wu
more authors

This paper investigates the problem of Partitioning Skew in MapReduce-based system. Our studies with Hadoop, a widely used MapReduce implementation, demonstrate that the presence of partitioning skew causes a huge amount of data transfer during the shuffle phase and leads to significant unfairness on the reduce input among different data nodes. As a result, the applications experience performance degradation due to the long data transfer during the shuffle phase along with the computation skew, particularly in reduce phase. We develop a novel algorithm named LEEN for locality-aware and fairness-aware key partitioning in MapReduce. LEEN embraces an asynchronous map and reduce scheme. All buffered intermediate keys are partitioned according to their frequencies and the fairness of the expected data distribution after the shuffle phase. We have integrated LEEN into Hadoop-0.18.0. Our experiments demonstrate that LEEN can efficiently achieve higher locality and reduce the amount of shuffled data. More importantly, LEEN guarantees fair distribution of the reduce inputs. As a result, LEEN achieves a performance improvement of up to 40% on different workloads.

Published in:

Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on

Date of Conference:

Nov. 30 2010-Dec. 3 2010