By Topic

A Wideband 3.6 GHz Digital ΔΣ Fractional-N PLL With Phase Interpolation Divider and Digital Spur Cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marzo Zanuso ; Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy ; Salvatore Levantino ; Carlo Samori ; Andrea L. Lacaita

A digital ΔΣ fractional-N frequency synthesizer for 4G communication standards is presented which is able to achieve wide loop bandwidth while producing low fractional spurs. The loop adopts a fractional-N divider based on a phase interpolator, allowing to shrink the TDC dynamic range and to improve its linearity. A dynamic-element matching algorithm is employed to further improve TDC linearity and an original correlation algorithm is used to correct for the phase interpolator mismatches. Both digital algorithms operate in background and they are demonstrated to be concurrently effective in reducing in-band fractional spurs below -57 dBc. The circuit is fully integrated in a 65 nm CMOS process and it synthesizes a carrier in the 3.0-3.6 GHz range from a 40 MHz crystal reference with 40 Hz resolution. It achieves -104-dBc/Hz phase noise at 400-kHz offset and a 3.2-MHz maximum loop bandwidth. The synthesizer dissipates 80 mW and occupies 0.4 mm2.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:46 ,  Issue: 3 )