By Topic

Opportunistic 3D trajectory generation for the JPL Aerobot with Nonlinear Trajectory Generation methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weizhong Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Louisville, Louisville, KY, USA ; Inanc, T. ; Elfes, A.

NASA is supposed to implement a sustainable and affordable human and robotic program to explore the solar system and beyond as it is the first goal of The Presidents Vision for U.S. Space Exploration. The robotic exploration across the solar system consists of exploring Jupiters moons, asteroids and other bodies to search for evidence of life, and to understand the history of the solar system. Trajectory generation for a robotic vehicle is an essential part of the total mission planning. To save energy by exploiting possible situation such as wind will assist a robotic explorer extend its life span and perform tasks more reliably. In this paper, we propose to utilize Nonlinear Trajectory Generation (NTG) methodology to generate 3D opportunistic trajectories for an Aerobot by exploiting wind. The Aerobot is dynamically controlled by three propellers which are respectively parallel to the local three Cartesian axes. Constraints for the Aerobot control are derived from Euler-Lagrange equations since the Aerobot satisfies with the Lagrange-D'Alembert principle. The new proposed Aerobot model takes the aerodynamics into account. The results show that NTG can take the advantage of wind profiles to save significant energy for the defined goal.

Published in:

Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on

Date of Conference:

7-10 Dec. 2010