By Topic

Robust, Reduced Rank, Loaded Reiterative Median Cascaded Canceller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gerlach, K. ; Naval Res. Lab., Washington, DC, USA ; Picciolo, M.L.

A robust, fast-converging, reduced-rank adaptive processor called the loaded reiterative median cascaded canceller (LRMCC) is introduced. The LRMCC exhibits the highly desirable combination of 1) convergence-robustness to outliers/targets/nonstationary data in adaptive weight training data, and 2) fast convergence at a rate commensurate with reduced-rank algorithms. Simulated jamming data as well as measured airborne radar data from the MCARM space-time adaptive processing (STAP) database are used to show performance enhancements. Performance is compared with the fast maximum likelihood (FML) and sample matrix inversion (SMI) algorithms. It is demonstrated that the LRMCC is easily implemented and is a highly robust replacement for existing reduced-rank adaptive processors, exhibiting superior performance in nonideal measured data environments.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 1 )