Cart (Loading....) | Create Account
Close category search window
 

On optimal placements of processors in tori networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blaum, M. ; Almaden Res. Center, IBM Corp., San Jose, CA, USA ; Bruck, J. ; Pifarre, G.D. ; Sanz, J.L.C.

Two and three dimensional k-tori are among the most used topologies in the designs of new parallel computers. Traditionally (with the exception of the Tera parallel computer), these networks have been used as fully-populated networks, in the sense that every routing node in the topology is subjected to message injection. However, fully populated tori and meshes exhibit a theoretical throughput which degrades as the network size increases. In contrast, multistage networks (that are partially populated) scale well with the network size. Introducing slackness in fully populated tori, i.e., reducing the number of processors, and studying optimal routing strategies for the resulting interconnections are the central subjects of the paper. The key concept is the placement of the processors in a network together with a routing algorithm between them, where a placement is the subset of the nodes in the interconnection network that are attached to processors. The main contribution is the construction of optimal placements for d-dimensional k-tori networks, of sizes k and k2 and the corresponding routing algorithms for the cases d=2 and d=3, respectively

Published in:

Parallel and Distributed Processing, 1996., Eighth IEEE Symposium on

Date of Conference:

23-26 Oct 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.