By Topic

Comprehensive analysis of the impact of single and arrays of through silicon vias induced stress on high-k / metal gate CMOS performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

23 Author(s)

As scaling becomes increasingly difficult, 3D integration has emerged as a viable alternative to achieve the requisite bandwidth and power efficiency challenges. However mechanical stress induced by the through silicon vias (TSV) is one of the key constraints in the 3D flow that must be controlled in order to preserve the integrity of front end devices. For the first time an extended and comprehensive study is given for the stress induced by single- and arrayed TSVs and its impact on both analog and digital FEOL devices and circuits. This work provides a complete experimental assessment and quantifies the stress distribution and its effect on front end devices. By using a combined experimental and theoretical approach we provide a framework that will enable stress aware design and the right definition of keep out zone and ultimately save valuable silicon area.

Published in:

Electron Devices Meeting (IEDM), 2010 IEEE International

Date of Conference:

6-8 Dec. 2010