By Topic

A DCVSL Delay Cell for Fast Low Power Frequency Synthesis Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Didem Z. Turker ; Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA ; Sunil P. Khatri ; Edgar Sanchez-Sinencio

In this paper, a low-cost, power efficient and fast Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cell (named DCVSL-R) is proposed. We use the DCVSL-R cell to implement high frequency and power-critical delay cells and flip-flops of ring oscillators and frequency dividers. When compared to TSPC, DCVSL circuits offer small input and clock capacitance and a symmetric differential loading for previous RF stages. When compared to CML, they offer low transistor count, no headroom limitation, rail-to-rail swing and no static current consumption. However, DCVSL circuits suffer from a large low-to-high propagation delay, which limits their speed and results in asymmetrical output waveforms. The proposed DCVSL-R circuit embodies the benefits of DCVSL while reducing the total propagation delay, achieving faster operation. DCVSL-R also generates symmetrical output waveforms which are critical for differential circuits. Another contribution of this work is a closed-form delay model that predicts the speed of DCVSL circuits with 8% worst case accuracy. We implement two ring-oscillator-based VCOs in 0.13 μm technology with DCVSL and DCVSL-R delay cells. Measurements show that the proposed DCVSL-R based VCO consumes 30% less power than the DCVSL VCO for the same oscillation frequency (2.4 GHz) and same phase noise (-113 dBc/Hz at 10 MHz). DCVSL-R circuits are also used to implement the high frequency dual modulus prescaler (DMP) of a 2.4 GHz frequency synthesizer in 0.18 μm technology. The DMP consumes only 0.8 mW at 2.48 GHz, a 40% reduction in power when compared to other reported DMPs with similar division ratios and operating frequencies. The RF buffer that drives the DMP consumes only 0.27 mW, demonstrating the lowest combined DMP and buffer power consumption among similar synthesizers in literature.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 6 )