By Topic

Minimizing Task Preemptions and Migrations in Multiprocessor Optimal Real-Time Schedules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thomas Megel ; Embedded Real Time Syst. Lab., CEA, Gif-sur-Yvette, France ; Renaud Sirdey ; Vincent David

We present a new approach to decrease task preemptions and migrations in optimal global real-time schedules on symmetric multiprocessors. Contrary to classical approaches, our method proceeds in two steps, one off-line to place jobs on intervals and one on-line to schedule them dynamically inside each interval. We propose a new linear programming formulation and a local scheduler which exhibits low complexity and produces few task preemptions and migrations. We compare our approach with other optimal scheduling algorithms, using the implicit-deadline periodic task model. Simulation results illustrate the competitiveness of our approach with respect to task preemptions and migrations.

Published in:

Real-Time Systems Symposium (RTSS), 2010 IEEE 31st

Date of Conference:

Nov. 30 2010-Dec. 3 2010