By Topic

Sampling of Deterministic Signals and Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boche, H. ; Lehrstuhl fur Theor. Informationstechnik, Tech. Univ. Munchen, München, Germany ; Monich, U.J.

In this paper, we analyze sampling approximations of stable linear time-invariant systems for input signals in the Paley-Wiener space PWπ1. The goal is to approximate a transform Tf by using only the samples of the signal f, which do not necessarily have to be equidistant. We completely characterize the stable linear time-invariant (LTI) systems T and sampling patterns for which the approximation process converges to Tf for all signals in PWπ1. Furthermore, we prove that for every complete interpolating sequence there exist a stable LTI system and a signal in PWπ1 for which the approximation error increases unboundedly as the number of samples that are used for the approximation is increased. This shows that a more flexible choice of the sampling points instead of equidistant sampling, where such a divergence behavior is known to exist, is not sufficient to overcome the divergence. Thus, sampling based signal processing has fundamental limits. The calculations further indicate that oversampling cannot resolve the convergence problems.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 5 )