By Topic

Neuro-wavelet based islanding detection technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fayyad, Y. ; Dept. of Electr. Eng., American Univ. of Sharjah, Sharjah, United Arab Emirates ; Osman, A.

Connecting distributed generators to the normal radial distribution system improve the power quality and increase the capacity of the electric grid. However, they disturb the radial nature of the network and thus give rise to many problems. Unintentional islanding is one of the encountered problems. In this paper a neuro-wavelet islanding detection technique has been developed. The method is based on the transient voltage signals generated during the islanding event. Discrete wavelet transform is adopted to extract feature vectors which will then be fed to a trained artificial neural network classifier to classify the transients generated as islanding or non-islanding events. The trained classifier was then tested using novel voltage signals. The test results indicate that this approach can detect islanding events with a good degree of accuracy.

Published in:

Electric Power and Energy Conference (EPEC), 2010 IEEE

Date of Conference:

25-27 Aug. 2010