By Topic

Interval-Valued Fuzzy Sets Applied to Stereo Matching of Color Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Galar, M. ; Dept. of Autom. y Comput., Univ. Publica de Navarra, Pamplona, Spain ; Fernandez, J. ; Beliakov, G. ; Bustince, H.

Stereo matching problem attempts to find corresponding locations between pairs of displaced images of the same scene. Correspondence estimation between pixels suffers from occlusions, noise, and bias. This paper introduces a novel approach to represent images by means of interval-valued fuzzy sets. These sets allow one to overcome the uncertainty due to the aforementioned problems. The aim is to take advantage of the new representation to develop a stereo matching algorithm. The interval-valued fuzzification process for images that is proposed here is based on image segmentation. Interval-valued fuzzy similarities are introduced to compare windows whose pixels are represented by intervals. To make use of color information, the similarities of the RGB channels were aggregated using the luminance formula. The experimental analysis makes a comparison with other methods. The new representation that is proposed together with the new similarity measure show a better overall behavior, providing more accurate correspondences, mainly near depth discontinuities and for images with a large amount of color.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )