By Topic

Novel design of a totally decoupled flexure-based XYZ parallel micropositioning stage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingsong Xu ; Dept. of Electromech. Eng., Univ. of Macau, Macao, China ; Yangmin Li

This paper presents the design process of a totally decoupled flexure-based XYZ compliant parallel-kinematics micropositioning stage. The uniqueness of the proposed XYZ stage lies in that it consists of three monolithic limbs and has both input and output decoupling properties. The output decoupling is allowed by the employment of a proposed 2-D compound parallelogram flexure, and the input decoupling is implemented by actuation isolation which is enabled by the double compound parallelogram flexures with large transverse stiffness. By modeling each flexure hinge as a 2-DOF compliant joint, analytical models for the amplification ratio and input stiffness of the XYZ stage are established, which are validated by finite element analysis performed with ANSYS. The presented results are useful for the development of a new XYZ micropositioning stage for the micro-/nanomanipulation applications.

Published in:

Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on

Date of Conference:

6-9 July 2010