By Topic

On the Number of Errors Correctable with Codes on Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alexander Barg ; Department of Electrical and Computer Engineering and Institute for Systems Research, University of Maryland, College Park ; Arya Mazumdar

We study ensembles of codes on graphs (generalized low-density parity-check, or LDPC codes) constructed from random graphs and fixed local constrained codes, and their extension to codes on hypergraphs. It is known that the average minimum distance of codes in these ensembles grows linearly with the code length. We show that these codes can correct a linearly growing number of errors under simple iterative decoding algorithms. In particular, we show that this property extends to codes constructed by parallel concatenation of Hamming codes and other codes with small minimum distance. Previously known results that proved this property for graph codes relied on graph expansion and required the choice of local codes with large distance relative to their length.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 2 )