Cart (Loading....) | Create Account
Close category search window
 

PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao-Hui Lee ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chen-Kung Univ., Tainan, Taiwan ; Tseng, V.S.

Recently, multivariate temporal data classification has been widely applied on many fields, such as bio-signals analysis, stocks prediction and weather forecasting. Multivariate temporal data contains hybrid type of attributes like numeric and categorical ones. However, most classification methods proposed in the past researches are not directly applicable to the multivariate temporal data with multiple types. Additionally, no useful and readable rules are provided in the existing methods for advanced classification analysis. In this paper, we proposed a novel algorithm named Progressive Temporal Class Rule Miner (PTCR-Miner) for classification on multivariate temporal data with a rule-based design. Through our algorithm, the classification rules discovered follow the purification concept we defined to be comprehensible and intuitive for general users to use on data classification. A series of experiments were conducted to evaluate our method with a multivariate temporal data simulator. The experimental results showed that PTCR-Miner performs effectively and efficiently on different simulated multivariate temporal datasets. Additionally, a real dataset related to asthma monitoring was also tested and the results showed that our classification mechanism works stably for asthma attack predictions. This means the discovered rules are really helpful and comprehensible for data classification. Furthermore, the rule-based and flexible architecture make PTCR-Miner more applicable to different application areas of multivariate temporal data classification.

Published in:

Data Mining Workshops (ICDMW), 2010 IEEE International Conference on

Date of Conference:

13-13 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.