Cart (Loading....) | Create Account
Close category search window
 

Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Estupinan, E. ; Dept. of Mech. Eng., Univ. of Tarapaca, Arica, Chile ; Santos, I.

Although mechatronic systems are nowadays implemented in a large number of systems in vehicles, active lubrication systems are still incipient in industrial applications. This study is an attempt to extend the active lubrication concept to combustion engines and gives a theoretical contribution to this field. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically modified hydrostatic lubrication. In this study, two different schemes for the oil injection system in actively lubricated main engine bearings are presented. The use of active lubrication in journal bearings helps to enhance the hydrodynamic fluid film by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. In this study, the hydrostatic lubrication is modified by injecting oil at controllable pressures through orifices circumferentially located around the bearing surface. The main equations that govern the dynamics of the injection for a piezo-actuated oil injector and a mechanical-actuated oil injector are presented. It is shown how the dynamics of the oil injection system is coupled to the dynamics of the bearing fluid film through equations. The global system is numerically solved using as a case study a single-cylinder combustion engine, where the conventional lubrication of the main bearing is modified by applying radial oil injection using piezo-actuated injection. The performance of such a hybrid bearing is compared to an equivalent conventional lubricated bearing in terms of the maximum fluid film pressures, minimum fluid film thicknesses, and reduction of viscous friction losses.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.