By Topic

Unsupervised learning of action primitives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanmohan ; Computer Vision and Machine Intelligence Lab, CIT, Aalborg University, Copenhagen, Denmark ; Volker Krüger ; Danica Kragic

Action representation is a key issue in imitation learning for humanoids. With the recent finding of mirror neurons there has been a growing interest in expressing actions as a combination meaningful subparts called primitives. Primitives could be thought of as an alphabet for the human actions. In this paper we observe that human actions and objects can be seen as being intertwined: we can interpret actions from the way the body parts are moving, but as well from how their effect on the involved object. While human movements can look vastly different even under minor changes in location, orientation and scale, the use of the object can provide a strong invariant for the detection of motion primitives. In this paper we propose an unsupervised learning approach for action primitives that makes use of the human movements as well as the object state changes. We group actions according to the changes they make to the object state space. Movements that produce the same state change in the object state space are classified to be instances of the same action primitive. This allows us to define action primitives as sets of movements where the movements of each primitive are connected through the object state change they induce.

Published in:

2010 10th IEEE-RAS International Conference on Humanoid Robots

Date of Conference:

6-8 Dec. 2010