By Topic

On-line periodic movement and force-profile learning for adaptation to new surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gams, A. ; Dept. of Autom., Biocybernetics & Robot., Jozef Stefan Inst., Ljubljana, Slovenia ; Do, M. ; Ude, A. ; Asfour, T.
more authors

To control the motion of a humanoid robot along a desired trajectory in contact with a rigid object, we need to take into account forces that arise from contact with the surface of the object. In this paper we propose a new method that enables the robot to adapt its motion to different surfaces. The initial trajectories are encoded by dynamic movement primitives, which can be learned from visual feedback using a two-layered imitation system. In our approach these initial trajectories are modified using regression methods. The data for learning is provided by force feedback. In this way new trajectories are learned that ensure that the robot can move along the object while maintaining contact and applying the desired force to the object. Active compliance can be used more effectively with such trajectories. We present the results for both movement imitation and force profile learning on two different surfaces. We applied the method to the ARMAR-IIIb humanoid robot, where we use the system for learning and imitating a periodic task of wiping a kitchen table.

Published in:

Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on

Date of Conference:

6-8 Dec. 2010