By Topic

Optimizing Bloom Filter Settings in Peer-to-Peer Multikeyword Searching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hanhua Chen ; Services Comput. Technol. & Syst. Lab., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Hai Jin ; Lei Chen ; Yunhao Liu
more authors

Peer-to-Peer multikeyword searching requires distributed intersection/union operations across wide area networks, raising a large amount of traffic cost. Existing schemes commonly utilize Bloom Filters (BFs) encoding to effectively reduce the traffic cost during the intersection/union operations. In this paper, we address the problem of optimizing the settings of a BF. We show, through mathematical proof, that the optimal setting of BF in terms of traffic cost is determined by the statistical information of the involved inverted lists, not the minimized false positive rate as claimed by previous studies. Through numerical analysis, we demonstrate how to obtain optimal settings. To better evaluate the performance of this design, we conduct comprehensive simulations on TREC WT10G test collection and query logs of a major commercial web search engine. Results show that our design significantly reduces the search traffic and latency of the existing approaches.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 4 )