By Topic

A Variational Bayesian Framework for Clustering with Multiple Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiga, M. ; Bioinf. Center, Kyoto Univ., Uji, Japan ; Mamitsuka, H.

Mining patterns in graphs has become an important issue in real applications, such as bioinformatics and web mining. We address a graph clustering problem where a cluster is a set of densely connected nodes, under a practical setting that 1) the input is multiple graphs which share a set of nodes but have different edges and 2) a true cluster cannot be found in all given graphs. For this problem, we propose a probabilistic generative model and a robust learning scheme based on variational Bayesian estimation. A key feature of our probabilistic framework is that not only nodes but also given graphs can be clustered at the same time, allowing our model to capture clusters found in only part of all given graphs. We empirically evaluated the effectiveness of the proposed framework on not only a variety of synthetic graphs but also real gene networks, demonstrating that our proposed approach can improve the clustering performance of competing methods in both synthetic and real data.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 4 )