By Topic

Fuzzy Orders-of-Magnitude-Based Link Analysis for Qualitative Alias Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiang Shen ; Dept. of Comput. Sci., Aberystwyth Univ., Aberystwyth, UK ; Boongoen, T.

Alias detection has been the significant subject being extensively studied for several domain applications, especially intelligence data analysis. Many preliminary methods rely on text-based measures, which are ineffective with false descriptions of terrorists' name, date-of-birth, and address. This barrier may be overcome through link information presented in relationships among objects of interests. Several numerical link-based similarity techniques have proven effective for identifying similar objects in the Internet and publication domains. However, as a result of exceptional cases with unduly high measure, these methods usually generate inaccurate similarity descriptions. Yet, they are either computationally inefficient or ineffective for alias detection with a single-property based model. This paper presents a novel orders-of-magnitude based similarity measure that integrates multiple link properties to refine the estimation process and derive semantic-rich similarity descriptions. The approach is based on order-of-magnitude reasoning with which the theory of fuzzy set is blended to provide quantitative semantics of descriptors and their unambiguous mathematical manipulation. With such explanatory formalism, analysts can validate the generated results and partly resolve the problem of false positives. It also allows coherent interpretation and communication within a decision-making group, using this computing-with-word capability. Its performance is evaluated over a terrorism-related data set, with further generalization over publication and email data collections.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 4 )