By Topic

{\rm MgB}_{2}/{\rm MgO/MgB}_{2} Josephson Junctions for High-Speed Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ke Chen ; Dept. of Phys., Temple Univ., Philadelphia, PA, USA ; Zhuang, C.G. ; Li, Qi ; Weng, X.
more authors

MgB2/MgO/MgB2 sandwich-type Josephson junctions have been fabricated using MgB2 films grown by hybrid physical-chemical vapor deposition (HPCVD). The MgO barrier and the insulating layer between wiring layers were made by RF magnetron sputtering. The junctions exhibit non-vanishing Jc up to 40 K, the Tc of MgB2. MgB2 wiring is achieved without significantly changing the junction properties. The fabrication and properties of the junctions are described in detail. The I-V curves of the junctions are hysteretic at temperatures below 25 K and are RSJ-like above 25 K. Multiple Andreev reflection was observed, manifested by subgap peaks in the dI/dV-V curves and in good agreement with the theory. The Jc spread (1σ) of 10 junctions on one chip is better than 10%, which is likely due to the defects inside the MgO barrier as identified by transmission electron microscopy. Superconducting circuits made of these junctions may be expected to work at frequencies up to 1 THz or at temperatures over 20 K.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )