By Topic

Activity Recognition for Smart Homes Using Dempster-Shafer Theory of Evidence Based on a Revised Lattice Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Liao ; Sch. of Comput. & Math., Univ. of Ulster, Newtownabbey, UK ; Yaxin Bi ; Chris Nugent

This paper explores an improvement to activity recognition within a Smart Home environment using the Dempster-Shafer theory of evidence. This approach has the ability to be used to monitor human activities in addition to managing uncertainty in sensor based readings. A three layer lattice structure has been proposed, which can be used to combine the mass functions derived from sensors along with sensor context and subsequently can be used to infer activities. From the total 209 recorded activities throughout a two week period, 85 toileting activities were considered. The results from this work demonstrated that this method was capable of detecting 75 of the toileting activities correctly within a Smart Home environment equating to a classification accuracy of 88.2%.

Published in:

Intelligent Environments (IE), 2010 Sixth International Conference on

Date of Conference:

19-21 July 2010