By Topic

Impossibility of Differentially Private Universally Optimal Mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brenner, H. ; Dept. of Math., Ben-Gurion Univ., Beersheba, Israel ; Nissim, K.

The notion of universally utility-maximizing privacy mechanism was recently introduced by Ghosh, Rough garden, and Sundararajan [STOC 2009]. These are mechanisms that guarantee optimal utility to a large class of information consumers, simultaneously, while preserving Differential Privacy [Dwork, McSherry, Nissim, and Smith, TCC 2006]. Ghosh, Rough garden and Sundararajan have demonstrated, quite surprisingly, a case where such a universally-optimal differentially-private mechanisms exists, when the information consumers are Bayesian. This result was recently extended by Gupte and Sundararajan [PODS 2010] to risk-averse consumers. Both positive results deal with mechanisms (approximately) computing a single count query (i.e., the number of individuals satisfying a specific property in a given population), and the starting point of our work is a trial at extending these results to similar settings, such as sum queries with non-binary individual values, histograms, and two (or more) count queries. We show, however, that universally-optimal mechanisms do not exist for all these queries, both for Bayesian and risk-averse consumers. For the Bayesian case, we go further, and give a characterization of those functions that admit universally-optimal mechanisms, showing that a universally-optimal mechanism exists, essentially, only for a (single) count query. At the heart of our proof is a representation of a query function f by its privacy constraint graph Gf whose edges correspond to values resulting by applying f to neighboring databases.

Published in:

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on

Date of Conference:

23-26 Oct. 2010