By Topic

Polynomial Learning of Distribution Families

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Belkin, M. ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Sinha, K.

The question of polynomial learn ability of probability distributions, particularly Gaussian mixture distributions, has recently received significant attention in theoretical computer science and machine learning. However, despite major progress, the general question of polynomial learn ability of Gaussian mixture distributions still remained open. The current work resolves the question of polynomial learn ability for Gaussian mixtures in high dimension with an arbitrary fixed number of components. Specifically, we show that parameters of a Gaussian mixture distribution with fixed number of components can be learned using a sample whose size is polynomial in dimension and all other parameters. The result on learning Gaussian mixtures relies on an analysis of distributions belonging to what we call “polynomial families” in low dimension. These families are characterized by their moments being polynomial in parameters and include almost all common probability distributions as well as their mixtures and products. Using tools from real algebraic geometry, we show that parameters of any distribution belonging to such a family can be learned in polynomial time and using a polynomial number of sample points. The result on learning polynomial families is quite general and is of independent interest. To estimate parameters of a Gaussian mixture distribution in high dimensions, we provide a deterministic algorithm for dimensionality reduction. This allows us to reduce learning a high-dimensional mixture to a polynomial number of parameter estimations in low dimension. Combining this reduction with the results on polynomial families yields our result on learning arbitrary Gaussian mixtures in high dimensions.

Published in:

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on

Date of Conference:

23-26 Oct. 2010