Cart (Loading....) | Create Account
Close category search window
 

Cellular neural network for Markov random field image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sziranyi, T. ; Comput. & Autom. Inst., Hungarian Acad. of Sci., Budapest, Hungary ; Zerubia, J. ; Geldreich, D. ; Kato, Z.

Statistical approaches to early vision processes need a huge amount of computing power. These algorithms can usually be implemented on parallel computing structures. CNN is a fast parallel processor array for image processing. However, CNN is basically a deterministic analog circuit. We use the CNN-UM architecture for statistical image segmentation. With a single random in-put signal, we were able to implement a (pseudo) random field generator using one layer (one memory/cell) of the CNN. The whole algorithm needs 8 memories/cell. We can introduce this pseudo-stochastic segmentation process in the CNN structure. Considering the simple structure of the analog VLSI design, we use simple arithmetic functions (addition, multiplication) and very simple nonlinear output functions (step, jigsaw). With this architecture, a real VLSI CNN chip can execute a pseudo-stochastic relaxation algorithm of about 100 iterations in about 1 msec. In the Markov random field (MRF) theory, one important problem is parameter estimation. The random segmentation process must be preceded by the estimation of the gray-level distribution of the different classes on small image segments. This process is basically supervised. Usually the histograms of noisy images can be modelled as simple Gaussian distributions. This approach cannot be held in a CNN structure, since there should be as many additional layers as the number of classes. We should follow another way. We have developed a pixel-level distribution model

Published in:

Cellular Neural Networks and their Applications, 1996. CNNA-96. Proceedings., 1996 Fourth IEEE International Workshop on

Date of Conference:

24-26 Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.