By Topic

Active 3D Object Localization Using a Humanoid Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Alexander Andreopoulos ; Honda Research Institute Europe GmbH, 63073 Offenbach/Main, Germany, with the CoR-Lab, Research Institute for Cognition and Robotics, Bielefeld University, 33615 Bielefeld, Germany, and also with Department of Computer Science and Engineering and the Centre for Vision Research, York University, Toronto, Canada ; Stephan Hasler ; Heiko Wersing ; Herbert Janssen
more authors

We study the problem of actively searching for an object in a three-dimensional (3-D) environment under the constraint of a maximum search time using a visually guided humanoid robot with 26 degrees of freedom. The inherent intractability of the problem is discussed, and a greedy strategy for selecting the best next viewpoint is employed. We describe a target probability updating scheme approximating the optimal solution to the problem, providing an efficient solution to the selection of the best next viewpoint. We employ a hierarchical recognition architecture, inspired by human vision, that uses contextual cues for attending to the view-tuned units at the proper intrinsic scales and for active control of the robotic platform sensor's coordinate frame, which also gives us control of the extrinsic image scale and achieves the proper sequence of pathognomonic views of the scene. The recognition model makes no particular assumptions on shape properties like texture and is trained by showing the object by hand to the robot. Our results demonstrate the feasibility of using state-of-the-art vision-based systems for efficient and reliable object localization in an indoor 3-D environment.

Published in:

IEEE Transactions on Robotics  (Volume:27 ,  Issue: 1 )