By Topic

Dielectric Elastomer Generators: How Much Energy Can Be Converted?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soo Jin Adrian Koh ; School of Engineering and Applied Sciences, Harvard University, Cambridge, USA ; Christoph Keplinger ; Tiefeng Li ; Siegfried Bauer
more authors

Dielectric elastomers are being developed as generators to harvest energy from renewable sources, such as human movements and ocean waves. We model a generator as a system of two degrees of freedom, represented on either the stress-stretch plane or the voltage-charge plane. A point in such a plane represents a state of the generator, a curve represents a path of operation, a contour represents a cycle of operation, and the area enclosed by the contour represents the energy of conversion per cycle. Each mechanism of failure is represented by a curve in the plane. The curves of all the known mechanics of failure enclose the region of allowable states. The area of this region defines the maximum energy of conversion. This study includes the following mechanisms of failure: material rupture, loss of tension, electrical breakdown, and electromechanical instability. It is found that natural rubber outperforms VHB elastomer as a generator at strains less than 15%. Furthermore, by varying material parameters, energy of conversion can be increased above 1.0 J/g.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:16 ,  Issue: 1 )