By Topic

Using Chinese part-of-speech patterns for sentiment phrase identification and opinion extraction in user generated reviews

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ting-Chun Peng ; Institute for Information Industry, Taipei, Taiwan ; Chia-Chun Shih

Accelerated growth of the Internet has enabled users worldwide to share their feelings and experiences. User-generated content (UGC) websites are the most abundant sources of user reviews. Accurately identifying sentiment phrases is essential to understand the expressed opinions in user reviews. To achieve this, part-of-speech (POS) patterns of phrases are useful. However, previous studies for Chinese opinion extraction only translate English POS patterns directly into Chinese for this task without considering the feasibility. Therefore, this work proposes a Chinese opinion extraction method that exploits the observed Sinica Treebank POS patterns for sentiment phrase identification. Sinica Treebank is a widely representative POS corpus for Chinese. The results of preliminary experiments indicate that the proposed method is highly effective in extracting opinions from Chinese UGC reviews.

Published in:

Digital Information Management (ICDIM), 2010 Fifth International Conference on

Date of Conference:

5-8 July 2010