Cart (Loading....) | Create Account
Close category search window
 

Join Optimization in the MapReduce Environment for Column-wise Data Store

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Minqi Zhou ; Software Eng. Inst., East China Normal Univ., Shanghai, China ; Rong Zhang ; Dadan Zeng ; Weining Qian
more authors

The chain join processing which combines records from two or more tables sequentially has been well studied in the centralized databases. However, it has seldom been discussed in the cloud computing era, and remains imperative to be solved, especially where structured (or relational) data are stored in a column (attribute) wise fashion in distributed file systems (e.g., Google File System) over hundreds of or even thousands of commodities PCs. In this paper, we propose a novel method for chain join processing, which is one of the common primitives in the cloud era for column-wise stored data analysis. By effectively selecting the dedicated records (tuples) for the chain join based on the information exploited within bipartite join graph, communication cost for record transmission could be reduced dramatically. A bushy tree structure is deployed to regulate the chain join sequence, which further reduces the number of intermediate results generated and transmitted, and explores higher parallelism in join processing, while results in more efficient join processing. Our extensive performance study confirms the effectiveness and efficiency of our methods.

Published in:

Semantics Knowledge and Grid (SKG), 2010 Sixth International Conference on

Date of Conference:

1-3 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.