By Topic

Content identification based on digital fingerprint: What can be done if ML decoding fails?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Farhadzadeh, F. ; Comput. Sci. Dept., Univ. of Geneva, Geneva, Switzerland ; Voloshynovskiy, S. ; Koval, O.

In this paper, the performance of the content identification based on digital fingerprinting and order statistic list decoding is analyzed by evaluating the probabilities of correct identification, false acceptance and the probability mass function of queried binary fingerprint position on the list of candidates. The particular attention is dedicated to the cases when traditional maximum likelihood decoder fails to produce the reliable content identification. The maximum likelihood decoding is shown to be a particular case of order statistic list decoding for the list size equals 1. We demonstrate the efficiency of the proposed content identification system performance by investigating the probability mass function behavior and imposing the constraint on the cardinality of list size.

Published in:

Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on

Date of Conference:

4-6 Oct. 2010