By Topic

Geometric calibration of distributed microphone arrays from acoustic source correspondences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. D. Valente ; Dipartimento di Elettronica ed Informazione, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy ; M. Tagliasacchi ; F. Antonacci ; P. Bestagini
more authors

This paper proposes a method that solves the problem of geometric calibration of microphone arrays. We consider a distributed system, in which each array is controlled by separate acquisition devices that do not share a common synchronization clock. Given a set of probing sources, e.g. loudspeakers, each array computes an estimate of the source locations using a conventional TDOA-based algorithm. These observations are fused together by the proposed method, in order to estimate the position and pose of one array with respect to the other. Unlike previous approaches, we explicitly consider the anisotropic distribution of localization errors. As such, the proposed method is able to address the problem of geometric calibration when the probing sources are located both in the near- and far-field of the microphone arrays. Experimental results demonstrate that the improvement in terms of calibration accuracy with respect to state-of-the-art algorithms can be substantial, especially in the far-field.

Published in:

Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on

Date of Conference:

4-6 Oct. 2010