Cart (Loading....) | Create Account
Close category search window

Predicting Failures in Power Grids: The Case of Static Overloads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chertkov, Michael ; Theor. Div., New Mexico Consortium, Los Alamos, NM, USA ; Feng Pan ; Stepanov, M.G.

Here we develop an approach to predict power grid weak points, and specifically to efficiently identify the most probable failure modes in static load distribution for a given power network. This approach is applied to two examples: Guam's power system and also the IEEE RTS-96 system, both modeled within the static dc power flow model. Our algorithm is a power network adaption of the worst configuration heuristics, originally developed to study low probability events in physics and failures in error-correction. One finding is that, if the normal operational mode of the grid is sufficiently healthy, the failure modes, also called instantons, are sufficiently sparse, i.e., the failures are caused by load fluctuations at only a few buses. The technique is useful for discovering weak links which are saturated at the instantons. It can also identify generators working at the capacity and generators under capacity, thus providing predictive capability for improving the reliability of any power network.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.