By Topic

Limit of the Accuracy of Parameter Estimation for Moving Single Molecules Imaged by Fluorescence Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yau Wong ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Zhiping Lin ; Raimund J. Ober

In this paper, we consider the problem of the accuracy of estimating the location and other attributes of a moving single molecule whose trajectory is imaged by fluorescence microscopy. As accuracy in parameter estimation is closely related to the Fisher information matrix, we first give a general expression of the Fisher information matrix for the estimated parameters for a single object moving in three-dimensional (3D) space. Explicit Cramér-Rao lower bound (CRLB) expressions are then obtained from the Fisher information matrix for a single object moving in the two-dimensional (2D) focus plane with the object trajectory being either linear or circular. We also investigate how extraneous noise sources, pixelation, parameters of the detection system and parameters of the trajectory affect the limit of the accuracy. The results obtained in this paper provide insights that enable the experimentalists to optimize their experimental setups for tracking single molecules in order to achieve the best possible accuracy. They are also applicable to the general problem of tracking an object using quantum limited detectors.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 3 )