By Topic

Mean Shift-Based Defect Detection in Multicrystalline Solar Wafer Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Du-Ming Tsai ; Ind. Eng. & Manage., Yuan-Ze Univ., Taoyuan, Taiwan ; Jie-Yu Luo

This paper presents an automated visual inspection scheme for multicrystalline solar wafers using the mean-shift technique. The surface quality of a solar wafer critically determines the conversion efficiency of the solar cell. A multicrystalline solar wafer contains random grain structures and results in a heterogeneous texture in the sensed image, which makes the defect detection task extremely difficult. Mean-shift technique that moves each data point to the mode of the data based on a kernel density estimator is applied for detecting subtle defects in a complicated background. Since the grain edges enclosed in a small spatial window in the solar wafer show more consistent edge directions and a defect region presents a high variation of edge directions, the entropy of gradient directions in a small neighborhood window is initially calculated to convert the gray-level image into an entropy image. The mean-shift smoothing procedure is then performed on the entropy image to remove noise and defect-free grain edges. The preserved edge points in the filtered image can then be easily identified as defective ones by a simple adaptive threshold. Experimental results have shown the proposed method performs effectively for detecting fingerprint and contamination defects in solar wafer surfaces.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 1 )