Cart (Loading....) | Create Account
Close category search window
 

Design of Optimized Convolutional and Serially Concatenated Convolutional Codes in the Presence of A-priori Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abrardo, A. ; Dept. of Inf. Eng., Univ. of Siena, Siena, Italy ; Ferrari, G.

In this paper, we focus on the design of optimized binary convolutional codes (CCs) and serially concatenated convolutional codes (SCCCs) in the presence of a-priori information (API) at the receiver. For large signal-to-noise ratios (SNRs), we first propose a CC design criterion based on the minimization of a union bound on the bit error probability (BEP). In this case, relevant performance gains, with respect to previously proposed CCs, are obtained. These gains persist even in the presence of estimation errors on the API. Then, we apply the same union bound-based design criterion to SCCCs. Since the BEP of SCCCs is characterized by a typical waterfall shape, the proposed union bound-based design criterion is accurate only at large SNR, to estimate the BEP floor. In order to complement this analysis, we propose a density evolution-based approach to optimize the SCCC design in terms of minimization of the SNR of the "knee" of the BEP curve. The obtained simulation results show substantial gains with respect to previously proposed parallel concatenated convolutional coding (PCCCing) schemes optimized under the assumption of no API at the decoder. Moreover, in the presence of strong API the proposed SCCCs allow to approach the Shannon limit (SL) more than any previously proposed turbo coding scheme.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

February 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.