System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Homogeneity Localization Using Particle Filters With Application to Noise Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghazal, M. ; Electr. & Comput. Eng. Dept., Concordia Univ., Montreal, QC, Canada ; Amer, A.

This paper proposes a method for localizing homogeneity and estimating additive white Gaussian noise (AWGN) variance in images. The proposed method uses spatially and sparsely scattered initial seeds and utilizes particle filtering techniques to guide their spatial movement towards homogeneous locations. This way, the proposed method avoids the need to perform the full search associated with block-based noise estimation methods. To achieve this, the paper proposes for the particle filter a dynamic model and a homogeneity observation model based on Laplacian structure detectors. The variance of AWGN is robustly estimated from the variances of blocks in the detected homogeneous areas. A proposed adaptive trimmed-mean based robust estimator is used to account for the reduction in estimation samples from the full search approach. Our results show that the proposed method reduces the number of homogeneity measurements required by block-based methods while achieving more accuracy.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )