By Topic

Variation-aware layout-driven scheduling for performance yield optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lucas, G. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Deming Chen

With the move to deep submicron processes, the design-productivity gap has continued to widen for RTL-based design methodologies. High-level synthesis has been touted as a solution to the design-productivity gap by allowing designers to move up to a higher level of abstraction where they focus on the functionality of the circuit instead of the low level details. However, at the same time, the move to deep submicron processes has led to increased levels of process variation, which must be considered during synthesis so that the performance yield of the circuit meets design specifications. In this paper, we tackle the problem of performance yield optimization during the scheduling task of high-level synthesis. We formulate the problem of performance yield optimization for scheduling as an integer linear programming problem (ILP) and offer the following contributions: 1) a totally unimodular ILP formulation for performance yield maximization and 2) a variation-aware and layout-driven iterative algorithm for performance yield improvement. Experimental results show that we can obtain significant gain in performance yield compared to a state-of-the-art variation-aware high-level synthesis tool Fast Yield.

Published in:

Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2010