Cart (Loading....) | Create Account
Close category search window
 

Statistical approach to segmentation of single-channel cerebral MR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajapakse, J.C. ; Child Psychiatry Branch, Nat. Inst. of Health, Bethesda, MD, USA ; Giedd, J.N. ; Rapoport, J.L.

A statistical model is presented that represents the distributions of major tissue classes in single-channel magnetic resonance (MR) cerebral images. Using the model, cerebral images are segmented into gray matter, white matter, and cerebrospinal fluid (CSF). The model accounts for random noise, magnetic field inhomogeneities, and biological variations of the tissues. Intensity measurements are modeled by a finite Gaussian mixture. Smoothness and piecewise contiguous nature of the tissue regions are modeled by a three-dimensional (3-D) Markov random field (MRF). A segmentation algorithm, based on the statistical model, approximately finds the maximum a posteriori (MAP) estimation of the segmentation and estimates the model parameters from the image data. The proposed scheme for segmentation is based on the iterative conditional modes (ICM) algorithm in which measurement model parameters are estimated using local information at each site, and the prior model parameters are estimated using the segmentation after each cycle of iterations. Application of the algorithm to a sample of clinical MR brain scans, comparisons of the algorithm with other statistical methods, and a validation study with a phantom are presented. The algorithm constitutes a significant step toward a complete data driven unsupervised approach to segmentation of MR images in the presence of the random noise and intensity inhomogeneities.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

April 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.