By Topic

Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tzionas, P.G. ; Dept. of Electr. & Comput. Eng., Democritus Univ. of Thrace, Xanthi, Greece ; Thanailakis, A. ; Tsalides, P.G.

This paper presents a new parallel algorithm for collision-free path planning of a diamond-shaped robot among arbitrarily shaped obstacles, which are represented as a discrete image, and its implementation in VLSI. The proposed algorithm is based on a retraction of free space onto the Voronoi diagram, which is constructed through the time evolution of cellular automata, after an initial phase during which the boundaries of obstacles are identified and coded with respect to their orientation. The proposed algorithm is both space and time efficient, since it does not require the modeling of objects or distance and intersection calculations. Additionally, the proposed twodimensional multistate cellular automaton architecture achieves high frequency of operation and it is particularly suited for VLSI implementation due to its inherent parallelism, structural locality, regularity, and modularity

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:13 ,  Issue: 2 )