By Topic

Modeling manufacturing dependability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zakarian, A. ; Dept. of Ind. Eng., Iowa Univ., Iowa City, IA, USA ; Kusiak, A.

In this paper, an analytical approach for the availability evaluation of cellular manufacturing systems is presented, where a manufacturing system is considered operational as long as its production capacity requirements are satisfied. The advantage of the approach is that constructing a system level Markov chain (a complex task) is not required. A manufacturing system is decomposed into two subsystems, i.e. machining system and material handling system. The machining subsystem is in turn decomposed into machine cells. For each machine cell and material handling subsystem, a Markovian model is derived and solved to find the probability of a subset of working machines in each cell, and a subset of the operating material handling carriers that satisfies the manufacturing capacity requirements. The overall manufacturing system availability is obtained using a procedure presented in the paper. The novelty of the approach is that it incorporates imperfect coverage and imperfect repair factors in the Markovian models. The approach is used to evaluate transient and steady-state performance of three alternative designs based on an industrial example. Detailed discussion of the results and the impact of imperfect coverage and imperfect repair on the availability of the manufacturing system is presented. Possible extensions of the work and software tools available for model analysis are also discussed

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:13 ,  Issue: 2 )