By Topic

Learning Pattern Recognition Through Quasi-Synchronization of Phase Oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vassilieva, E. ; Lab. d''Inf. de l''X, Lab. d''Inf. de l''Ecole Polytech., Palaiseau, France ; Pinto, G. ; Acacio de Barros, J. ; Suppes, P.

The idea that synchronized oscillations are important in cognitive tasks is receiving significant attention. In this view, single neurons are no longer elementary computational units. Rather, coherent oscillating groups of neurons are seen as nodes of networks performing cognitive tasks. From this assumption, we develop a model of stimulus-pattern learning and recognition. The three most salient features of our model are: 1) a new definition of synchronization; 2) demonstrated robustness in the presence of noise; and 3) pattern learning.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 1 )