By Topic

Development of a Variable-Inertia Device With a Magnetic Planetary Gearbox

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mi-Ching Tsai ; Department of Mechanical Engineering , National Cheng Kung University, Tainan, Taiwan, R.O.C. ; Cheng-Chi Huang

This paper presents a mechanical device with controllable inertia, in which a magnetic planetary gearbox (PG) is employed to hold two free terminals (the carrier and sun gear) and one feedforward control terminal (the ring gear). Based on the concept of inerter design and impedance control, the ring-gear motor controls the equivalent inertia of the carrier. The sealless nature of the proposed noncontact magnetic PG provides a low-inertia design ability and an over-load protection characteristic for a high-torque transmission. The control block diagram technique is utilized to represent the dynamic model of the variable-inertia device for the equivalent-inertia derivation and computer simulation, in which its equivalent inertia can be found by the transfer function from the torque to the acceleration at the carrier. Finally, the dynamic model is verified by experiments, and the controlled range of the equivalent inertia is illustrated.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:16 ,  Issue: 6 )