By Topic

Face Recognition Using Enhanced Fisher Linear Discriminant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
El Aroussi, M. ; LRIT- Unit Associe Au CNRST, Mohammed V Univ.-Agdal, Rabat, Morocco ; Ghouzali, S. ; Rziza, M. ; Aboutajdine, D.
more authors

In this paper, an efficient local appearance feature extraction method based the multi-resolution Steerable Pyramids (SP) transform is proposed in order to further enhance the performance of the well known Fisher Linear Discriminant (FLD) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based SP coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis, and Fisher Linear Discriminant (FLD), Independent Component Analysis and ICA. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Published in:

Signal-Image Technology & Internet-Based Systems (SITIS), 2009 Fifth International Conference on

Date of Conference:

Nov. 29 2009-Dec. 4 2009