By Topic

Investigation of the Hemodynamic Response in Near Infrared Spectroscopy Data Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le Hoa Nguyen ; Sch. of Mech. Eng., Pusan Nat. Univ., Busan, South Korea ; Keum-Shik Hong

Near infrared spectroscopy (NIRS) is an effective technique for examining functional brain activity during cognitive tasks by enabling the measurement of the concentration changes of oxy-hemoglobin and deoxy-hemoglobin. In NIRS data analysis, accurate estimation of the hemodynamic response function (HRF) is still under investigation. Most existing methods assume that the shape of the HRF to be known. This assumption may not be appropriate when the HRF varies from subject to subject or from region to region. In this paper, a deconvolution algorithm to estimate the HRF is presented. The advantage of this method is no prior hypothesis about the shape of the HRF is required. In addition, in order to increase the sensitivity of NIRS to functional brain activity, an adaptive filter is designed to remove physiological noises from the noisy NIRS data. In order to verify the effectiveness of the proposed methods, numerical simulations were performed, the results of which are provided herein.

Published in:

Knowledge and Systems Engineering (KSE), 2010 Second International Conference on

Date of Conference:

7-9 Oct. 2010