By Topic

Optimum Spatio-Spectral Filtering Network for Brain–Computer Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haihong Zhang ; Agency for Sci., Technol. & Res., Inst. for Infocomm Res., Singapore, Singapore ; Zheng Yang Chin ; Kai Keng Ang ; Cuntai Guan
more authors

This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance (≥95% confidence level) in most cases.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 1 )