By Topic

A Data Throughput Prediction and Optimization Service for Widely Distributed Many-Task Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dengpan Yin ; Louisiana State University, Baton Rouge ; Esma Yildirim ; Sivakumar Kulasekaran ; Brandon Ross
more authors

In this paper, we present the design and implementation of an application-layer data throughput prediction and optimization service for many-task computing in widely distributed environments. This service uses multiple parallel TCP streams to improve the end-to-end throughput of data transfers. A novel mathematical model is developed to determine the number of parallel streams, required to achieve the best network performance. This model can predict the optimal number of parallel streams with as few as three prediction points. We implement this new service in the Stork Data Scheduler, where the prediction points can be obtained using Iperf and GridFTP samplings. Our results show that the prediction cost plus the optimized transfer time is much less than the nonoptimized transfer time in most cases. As a result, Stork data transfer jobs with optimization service can be completed much earlier, compared to nonoptimized data transfer jobs.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:22 ,  Issue: 6 )