Cart (Loading....) | Create Account
Close category search window
 

Multicloud Deployment of Computing Clusters for Loosely Coupled MTC Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moreno-Vozmediano, R. ; Dept. Arquitectura de Comput. y Autom., Univ. Complutense de Madrid, Madrid, Spain ; Montero, R.S. ; Llorente, I.M.

Cloud computing is gaining acceptance in many IT organizations, as an elastic, flexible, and variable-cost way to deploy their service platforms using outsourced resources. Unlike traditional utilities where a single provider scheme is a common practice, the ubiquitous access to cloud resources easily enables the simultaneous use of different clouds. In this paper, we explore this scenario to deploy a computing cluster on the top of a multicloud infrastructure, for solving loosely coupled Many-Task Computing (MTC) applications. In this way, the cluster nodes can be provisioned with resources from different clouds to improve the cost effectiveness of the deployment, or to implement high-availability strategies. We prove the viability of this kind of solutions by evaluating the scalability, performance, and cost of different configurations of a Sun Grid Engine cluster, deployed on a multicloud infrastructure spanning a local data center and three different cloud sites: Amazon EC2 Europe, Amazon EC2 US, and ElasticHosts. Although the testbed deployed in this work is limited to a reduced number of computing resources (due to hardware and budget limitations), we have complemented our analysis with a simulated infrastructure model, which includes a larger number of resources, and runs larger problem sizes. Data obtained by simulation show that performance and cost results can be extrapolated to large-scale problems and cluster infrastructures.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.