By Topic

Exploring Reliable Strategies for Defending Power Systems Against Targeted Attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo Chen ; Coll. of Eng. & Comput. Sci., Australian Nat. Univ., Canberra, ACT, Australia ; Zhao Yang Dong ; Hill, D.J. ; Yu Sheng Xue

Recently, game theory has been used to design optimized strategies for defending an electric power system against deliberate attacks. In this paper, we extend the current static model to a more generalized framework which includes several interaction models between defenders and attackers. A new criterion of reliable strategies for defending power systems has been derived. In addition, two allocation algorithms have been developed to seek reliable strategies for two types of defense tasks. The new criterion and algorithms are complementary to current security criteria and can provide useful information for decision-makers to protect their power systems against possible targeted attacks. Numerical simulation examples using the proposed methods are given as well.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 3 )