By Topic

Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gi Hyun Lim ; Department of Electronics and Computer Engineering, Hanyang University, Seoul , Korea ; Il Hong Suh ; Hyowon Suh

A significant obstacle for service robots is the execution of complex tasks in real environments. For example, it is not easy for service robots to find objects that are partially observable and are located at a place which is not identical but near the place where the robots saw them previously. To overcome the challenge effectively, robot knowledge represented as a semantic network can be extremely useful. This paper presents an ontology-based unified robot knowledge framework that integrates low-level data with high-level knowledge for robot intelligence. This framework consists of two sections: knowledge description and knowledge association. Knowledge description includes comprehensively integrated robot knowledge derived from low-level knowledge regarding perceptual features, part objects, metric maps, and primitive behaviors, as well as high-level knowledge about perceptual concepts, objects, semantic maps, tasks, and contexts. Knowledge association uses logical inference with both unidirectional and bidirectional rules. This characteristic enables reasoning to be performed even when only a partial information is available. The experimental results that demonstrate the advantages of using the proposed knowledge framework are also presented.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:41 ,  Issue: 3 )